INTERNSHIP REPORT

Summer, 2005

Хігнои Хнои

Yale College, BA '05 Yale School of Forestry & Environmental Studies, MEM '06

INTRODUCTION

Supported by the Cameron Speth and the Class of 1964 Fellowships, I took up a summer internship at *EMBARQ*, the World Resources Institute Center for Transport and the Environment, working on its various Asia projects. This report is intended to summarize my work and the relevant deliverables, record the difficulties encountered and lessons learned, and make recommendations for continued work by others in the future.

MAIN WORK

- 1. Established a transport indicator database for the three partner cities involved in the Project on Sustainable Urban Transport in Asia (PSUTA), namely, Hanoi (Vietnam), Pune (India), and Xi'an (China), and summarized the existing data into this database.
- 2. Established a transport indicator database including indicators in the areas of infrastructure, access, safety and environment -- in the same format as the PSUTA database described above, for fifteen major Chinese cities, and filled in data wherever information could be found.
- 3. Co-authored a paper on PSUTA titled "Indicators: Reliable Signposts on the Road to Sustainable Transportation -- the Partnership for Sustainable Urban Transport in Asia" for the Transportation Research Board of the National Research Council in the National Academy of Sciences, with research results from the indicator database developed for PSUTA.
- 4. Drafted a proposal for an international transport indicator database based on the PSUTA experience and for further efforts beyond PSUTA.

Deliverables

1. PSUTA database (saved in .05 - tools/Urban Trans Database/UrbanTransDatabase_in progress/PSUTA+Shanghai database.xls)

(1) Database structure

This database includes five main categories of transport indicators – people & places, transport, access, safety, and health & environment. Under each category, there are a few indicators with relevant units. These indicators are used to measure the performance of the urban transport system in its many aspects.

(2) Selection of indicators

There are five general categories of indicators as be discussed below:

1) People & Places	<u>DoD[*]</u>	Rationale	
Population	Е	Demand for public transport	
City area	Е	Area of coverage required of transportation system	
Population Density	Е	Demand for public transport	
Population growth rate	Μ	Expected future demand for public transport	
GDP per capita	Е	City's overall economic productivity and resources	
Income per capita	М	Household financial resources	
2) Infrastructure	DoD	Rationale	
Total road length	Е		
Area of paved roads	D		
Rail length	Е		
Road area/total urban area	М	Capacity of the current transport system	
Rail passenger capacity	Е		
Bus network length	Е		
Parking capacity	М		
# motor-vehicles			
(by categories and	E/M	Pressure on the transport system and most recent trends in	
ownership)		growth of motor-vehicles	
Average vehicle mileage	D	The degree to which vehicles are utilized; these could	
Average passenger mileage	D	indirectly be used for emission purposes.	
Transport investment	М	A measure of local government's willingness to transportation	
	-	intrastructure building, as well as room for future growth	
Household expenditure	D	Impact of transport on household budget and daily life	
l rips modal share	E	Identify the transportation means most often used	
2) 4	D+D	Deficiencia	
3) ACCESS			
		Lime lost in traffic, which could otherwise be used for work,	
Reputation w/in 500 m		Particle of the population with public transportation readily.	
Population with 500 m	D	available in the adjacent neighborhood	
Daily time use	М	Frequency of transport activities and demand	
Equality of access	D	Equality of access of men and women, of higher and lower	
		income groups, to various transport modes	
		· · · · ·	
4) Safety	DoD	Rationale	
Number of accidents	М		
Traffic fatalities (Total)	E	Direct negative externalities of unsafe urban transport systems	
5) Health & Environment	DoD	Rationale	
Pollutants		Concentrations of NOx, SOx, CO, HC, VOC and CO2, as well	
	М	as the fraction from the transport system including both	
		ambient concentration and traffic concentration cost to	

^{*} Degree of Difficulty in retrieving the data for a certain indicator: D (difficult), M (medium), E(easy).

Pollution related deaths	D	public health from the transport system
Level of noise	М	Cost to the living and working environment of citizens in the city from the transport system.

Please see Appendix I for a complete database indicator list.

(3) Observations & Lessons

While compiling the data from PSUTA city reports, some key issues are uncovered:

- a) Many areas of the established database for all three PSUTA cities still remain blank – these are the very areas that need to be addressed in future data collection work. In a few areas, such as number of total motor vehicles, cars, public buses, and two-wheelers, time-series data for many years in the 1990s and early 2000s are available and demonstrate clear trends. The challenge, however, is to find similar time-series data for the access, safety and environmental indicators, which can be correlated to the transportation. Environmental pollution monitoring, in particular, has not been delicately managed in the three cities – improvement in this area, if the policy-makers can identify this gap and decide to act on it, can lead to positive changes in the city's general environmental quality control system.
- b) Definitions of terms can be ambiguous, which can hurt the basic credibility of an indicator. For example, even among Chinese experts, a "car" ("汽车") can mean different things because of the ambiguities of the two characters in Chinese. In all three cities, boundary lines between urban areas and the "greater metropolitan" area are often uncertain, affecting population, vehicle, and pollution data in scale. Furthermore, definitions for such simple concepts as "trips" may also vary. Hence any database must give very clear definitions and explain how these differ from city to city. This is to give researchers and officials be them local or international have a clear sense of how the key concepts are defined.
- c) Transparency is another key element contributing to the credibility of a comprehensive database, yet based on the PSUTA reports we have obtained from EMBARQ partners, there are often data that look quite dubious yet we have no way of knowing how the data are retrieved and derived and what methods are used for calculation, interpolation and/or extrapolation. For instance, some cities have an "ambient air quality index" with average concentrations of various pollutants listed; however, it is often unclear how the index is calculated or how the listed concentrations are derived. In other words, the users and developers must know exactly what the data mean. Without transparency, tables filled with numbers are no more useful than blank tables.
- d) Also due to the differences in data collection among the three countries, the types of data available are rather inconsistent across the PSUTA cities. While some cities may do very well in summarizing data in certain areas, another city could have blanks for the same areas. This, however, creates an opportunity for cities in different countries to learn from each other. One consistent area of difficulty, however, does exist -- namely, access indicators

such as congestion (time lost in traffic), 500-meter-radius population, gender equity, and income equity; none of the PSUTA cities have reported data in these areas, and it is very possible that nobody has ever done any research or survey related to these indicators.

- e) Other existing databases, such as the ones developed by the UITP, Jane's Urban Transport Systems, as well as the World Bank's transport research group, do not cover the scope that the PSUTA indicator database has done namely, linking issues like pollution and safety closely to urban transport and integrating urban transport into overall city-planning. For example, Jane's Urban Transport Systems does not deal with air quality or safety, and the World Bank's research group, as its lead advisor Peter Roberts has said, has not done much work on urban transport, with most of its efforts focused on national highways and inter-city transportation. The UITP database is also rather crude in that it lacks the transparency and clear definition discussed earlier.
- f) Some time-series comparison and analysis were done whenever data are available. Aside from the "master database" tag in the file, a separate worksheet tagged "PSUTA time series" was created, with the vehicle numbers from all three PSUTA cities in time-series from 1990 to 2004. Clear trends are shown in these tables and the derived graphs; this demonstrates that when a database is well-kept, it can be very useful for research analysis.
- (3) Recommendations
 - a) The PSUTA city reports contain large quantities of data that can feed into the indicator database. However, it has been found that there are occasional conflicting information. For example, some data on past PowerPoint presentations have differed from draft reports submitted by cities, in which case, we generally rely on the reports.
 - b) Some data might not be very clear as to how they are retrieved, in which case getting in touch with our partners in the PSUTA cities are very helpful, either via phone calls or emails. Phone calls are especially helpful for clarification of methodologies. For instance, I found some data on how much noise came from traffic, yet we were not clear how the percentage was calculated. A phone call with Mao Zhong'an, our partner in Xi'an, confirmed that there was no scientific, systematic methods at this point and therefore we should not rely on the data. Getting directly in touch with partners has also been helpful in regard to point a) above, i.e. solving data discrepancies in separate reports. Two of our Pune partners submitted different reports that contained different vehicle numbers, and an email request received a very prompt reply on how each of their data should be used as well as the sources of the data, offering the due transparency.
- 2. Transport indicator database for fifteen Chinese cities (saved in .05 tools/Urban Trans Database/UrbanTransDatabase_in progress/15 Chinese cities database.xls)

(1) Database structure & indicators

This is an expansion of the PSUTA+Shanghai database into fifteen Chinese cities, with the same indicators. These cities include: Beijing, Changsha, Chengdu, Chongqing, Dalian, Hangzhou, Guangzhou, Kunming, Nanjing, Shanghai, Shenyang, Shenzhen, Tianjin, Wuhan, and Xi'an. These cities were chosen because of their the sizes of their populations, economies, and vehicle fleet. In fact, these metropolitan areas possess majority of motor-vehicles in China.

This nation-wide database can offer a more comprehensive picture of the transport situation in the given nation's urban areas. This will also enable the mayors to compare with other cities in the same country and see their own strengths and weaknesses.

Please see Appendix II for the indicator list.

- (2) Observations & Lessons
 - a) While some of the data are available in annually published municipal statistical yearbooks, others are either never taken or did not make the way into the yearbooks. The gap in the indicator database for major cities can inform city officials what types of data are needed in order for them to make more informed decisions to promote sustainable transport. As a test, fifteen major Chinese cities were chosen and placed in the same indicator database established for PSUTA cities. It is found that most Chinese cities are rather consistent in what types of data are summarized into official statistical yearbooks, and these data are often available in times-series as well. On the other hand, the data that are unavailable for one city are often not present in most other cities simply because the statistical bureaus and other agencies were never instructed to do so, creating a nation-wide gap.
 - b) While searching for available data, it is observed that many Chinese government agencies have moved the platform for information sharing to the Internet and more and more data are now present not just on city, provincial, and national statistical bureaus' websites, but also on each implementation agency's own website, which specializes and goes into more details in each area. For example, most big cities' environmental protection bureaus produce daily air quality monitoring results and publish monthly and/or annual pollution reports, including, but not limited to, SO₂, CO, NO₂, PM, and noise level, many of which are not present in the general statistical yearbooks. As this database is not yet complete, more agency information sources can be used to identify the real gaps.

Please see Appendix III for a list of websites that I have used to obtain some of the data.

c) One challenge in using some of the data, including the pollution data mentioned above is to figure out how they are retrieved and what methods are used. This relates to the transparency theme in indicators. For example, environmental protection bureaus (EPB) have all produced an overall noise level, which, as users of the data, we are not sure of its origin; furthermore, some EPBs also gave a percentage point for noise from traffic alone by the level of intensity – this is a very interesting number and we certainly would like to use it, but again, the method by which they generated this percentage contribution from traffic is unknown. Until these methodologies become transparent, the data collected would have very limited meanings.

(3) Recommendations

Aside from city statistic yearbooks, there are many other sources of information, e.g. Environmental Protection Bureaus(环保局), Traffic Management Team (交通队). And since some cities' statistic bureaus do not yet have all their yearbooks online, it might be advisable to make some purchases of municipal yearbooks to facilitate the completion of this database.

- 3. Paper on PSUTA to the Transportation Research Board (TRB) of the National Research Council for its 2006 meeting (saved in 05.tools/ADB project PSUTA/Articles-Papers/psuta_trb_2006.doc)
 - Researched for and utilized the "PSUTA+Shanghai" indicator database set up earlier to make graphs and tables for this paper submission, including:

- Growth of vehicle ownership in the three PSUTA cities

- Current motor-vehicle quantities by types of vehicles (cars, buses, 2-wheelers, trucks, etc.)

- Trips modal share: what transportation means people use to commute (private cars, buses, rail, 2-wheelers, non-motor)

• Edited and proof-read the final version of the paper before formal submission to the TRB.

ABSTRACT:

"We describe a collaborative effort with leaders of three middle-sized cities in Asia to build indicators of sustainable transport. These indicators should demonstrate the present state and direction of the transport system, the key driving forces (economic activity), important characteristics of the system that affect its sustainability, including provision of access to economic and personal activities, safety, and air quality affected by transportation activities. The indicators also measure the economic health of the transport industry and infrastructure itself.

"The partner cities were Pune (India), Hanoi (Viet Nam) and Xi'an (China). The objective was not to get a complete set of data and indicators, many of which would be costly to obtain. The goals instead were to identify key problems in transportation, to see what authorities did or did not know about problems with transportation, map this gap of information required to address the problems in a cost-effective way, bridge the gaps of information required for indicators, and cross the bridge with good policies. Fortunately, some important quantitative indicators did emerge. Many of these painted a grim picture of unsustainable transport.

"We give some quantitative examples illustrating some of the results from the three cities, and put forward our key recommendations for filling the gaps. We conclude that by our indicators, access is getting worse, clean air is getting scarcer, and safety is not improving very rapidly in the PSUTA cities. Measures could change these indicators and make transport more sustainable, which we hope our engagement will have stimulated."

4. Draft on current PSUTA status and potential project opportunities (saved in 05.tools/Urban Trans Database/UrbanTransDatabase_in progress/Asia Indicator Database Summary.doc, and Asia Indicator Database Summary_2.doc)

The second version, after being revised according to the suggestions from others, has included more content on the advantages of a comprehensive indicator database and explores beyond the PSUTA project. It is written as a draft proposal for possible future funding sources.

Objective:

"Establishing a comprehensive transport indicator database based on the PSUTA experience, extending the influence to more cities at the regional and national levels, and initiating partnerships with parties who both know about the technical issues involved in indicators and have influence over government decision-making."

APPENDIX I

Category	Sub-category	Indicator		Unit	
		Population:	Metropolitan	millions	
			Urban	millions	
			Surburban/rural	millions	
		City area:	Metropolitan		
			urban	sq km	
	Population & Area		Surburban/rural	sq km	
PEOPLE		Pop. density:	Metropolitan	per sq km	
& PLACES			Urban	per sq km	
			Surburban/rural	per sq km	
		Population growth	%		
	Individual	GDP per capita	USD or local		
		Income per capita	Income per capita		
		Total road length		km	
		Paved roads		% of total	
		Rail length		km	
		Road area		sq km	
		Road area/total u	rban area	%	
	Infrastructure	Rail passenger ca	pacity	per hour	
		Parking capacity	ratio, area		
		Bus network lengt	km		
		Total number			
		cars (
TRANSPORT	Motor Vehicles		buses		
			trucks		
			taxis		
			2-wheelers		
		Private		#	
	Owernship	Company			
		Government			
		Vehicle mileage		km	
		Passenger mileag	je	km	
		Transport investm	million \$		
	Transport Activities	Household expen	diture	\$	
		Modal shares:	car	%	
			bus	%	
			taxi	%	
			2-wheelers	%	
			non-motor	%	
		Congestion		time loss	
				road congested	
	Transport Conditions	Travel speed:	peak		

			off-peak	
		Population w	%	
ACCESS TO		Daily time us	se	min
TRANSPORT		Equality of a		
	Access		male	# or %
			female	%
			low-income	%
			high-income	%
		Number of a	ccidents	
SAFETY	Accidents	Traffic fatalit	ies (Total)	
			non-motor	
			motor	%
		NO x	concentration	
			% related to transport	%
		SO x	concentration	
			% related to transport	
		CO	concentration	
HEALTH &	Pollutants		% related to transport	
ENVIRONMENT		HC	concentration	
			% related to transport	
		PM10 or 2.5	mg/m^3	
		VOC	concentration	
			% related to transport	
		CO2		tons
		Level of nois	e	Db A
	Health Effect	Pollution related deaths		

APPENDIX II

Category	Indicator		Unit	Beijing
People & Places				
	Population*:	Metropolitan	millions	10.67
		Urban		
	City area*:	Metropolitan	sq km	12,484
Population & Area		Urban		
	Pop. Density:	Metropolitan	per sq km	855
		Urban		
	Population natural growth ra	te	%	
	GDP per capita*		yuan RMB	29,283
Individual	Income per capita Rui	ral		
	Urb	an		10,286
Transport				
	Paved roads (城建环保/市政	政设施)	km	
	km			
	sq km	74.94		
	Sidewalk area (市政设施)	sq km		
Infrastructure	Rail passenger capacity		per day	

	Parking capa	city	ratio, area	
	Bus network	length (城建环保/城市公交)	km	
	Total number	r	units	
		car (small-passeenge)	units	
Motor Vehicles		bus		17,580
		truck	units	
		taxi		
		2-wheelers	units	
	Private		#	
Owernship	Company			
	Government			
	Vehicle milea	age	km	
	Passenger m	ileage	km	
	Transport inv	restment	million \$	
Transport Activities	Household e	xpenditure*	\$	684.36
	Modal shares	s: car	%	
		bus	%	
		taxi	%	
		2-wheelers	%	
		non-motor	%	
Access to Transport	_			
	Congestion		time loss	
			road congested	
Transport Conditions	Travel speed	: peak		
	Denvlation	off-peak	0/	
	Population w	/in 500 m	%	
	Daily time us	e	mm	
A	Equality of ad	ccess	# or %	
ACCESS		fomolo	# UI %	
			70 0/	
		high-income	70 0/_	
Safatu		nign-income	70	
Salely	Number of a	zaidanta		
Accidents	Traffic fataliti	es (Total)		
Accidente		non-motor	%	
		motor	%	
Health & Environment				
	NO X	concentration	ma/m^3	0.076
		% related to transport	%	
	SO x	concentration	mg/m^3	0.067
		% related to transport	0	
	со	concentration	mg/m^3	2.5
Pollution		% related to transport	-	
	HC	concentration		
		% related to transport		
	PM-10		mg/m^3	0.166
	VOC	concentration		
		% related to transport		
	CO2		tons	

	Level of traffic noise (城建环保)	Db A	68.5
	Overall city noise	Db A	54.1(2)
Health Effect	Pollution related deaths		

APPENDIX III

Yearbook of China's Cities (2003) and own calculation

** 小型汽车 "smaller vehicles" -- assumed to be cars

(1) of which 32% from traffic, Tianjin Environmental Protection Report 2002,

http://www.tjhb.gov.cn/article.asp?id=696

(2) Beijing envir report: http://www.bjepb.gov.cn/news/2004-4/2004427154622.htm

(3) Chongqing envir report: http://www.cepb.gov.cn/hjgb/2002_04.html

(4) Hangzhou envir report: http://www.hzepb.gov.cn/20031216/gongbao2002/shj1.htm

(5) of which 16.2% from traffic, Wuhan envir report:

http://www.whepb.gov.cn/huanbao/communique.asp?fileid=6&filepath=communiquepath. Also included is the percentage of population living in areas with 60 or less noise level

(6) Derived from graphic data on Hunan envir report: http://www.hbj.hunan.gov.cn/manager/HJGB/20031231.htm

(7) Guangzhou envir report: http://www.gz.gov.cn/egov/rdzt/gzcm/gjhbmocs/200408020014.asp

(8) of which 47% from traffic, Kunming envr report: http://www.kmepb.gov.cn/enviroment/2002/4.htm

(9) Nanjing envir report: http://www.njhb.gov.cn/hjzl/2002gb.htm

(10) Shenzhen envir report: http://www.szems.gov.cn/hjgg/sz-2002.htm

(11) SO2/NO2/Noise data from Shanghai envir report: http://www.envir.online.sh.cn/law/bulletin/b2003/contents.htm

(12) Shenyang & Dalian SO2/PM10 2003 data in Liaoning provincial envir report:

http://www.lnepb.gov.cn/look.asp?id={122A4F16-0336-4646-8AAA-2FE7A86C99F8}